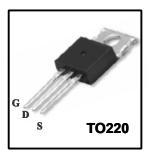


Silicon N-Channel MOSFET


Features

- $R_{DS(on)}(Max\ 22m\ \Omega)@V_{GS}=10V$
- Ultra-low Gate Charge(Typical 31nC)
- Fast Switching Capability
- 100%Avalanche Tested
- Maximum Junction Temperature Range(150°C)

General Description

This Power MOSFET is produced using Winsemi's trench layout-based process. This technology improves the performances compared with standard parts from various sources. All of these power MOSFETs are designed for applications in switching regulators, switching convertors, motor and relay drivers, and drivers for high power bipolar switching transistors demanding high speed and low gate drive power.

Absolute Maximum Ratings

Symbol	Parameter		Value	Units
V _{DSS}	Drain Source Voltage		60	V
	Continuous Drain Current(@Tc=25℃)	50	Α	
I _D	Continuous Drain Current(@Tc=100°C)	38	Α	
I _{DM}	Drain Current Pulsed	(Note1)	200	Α
V _{GS}	Gate to Source Voltage		±25	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	480	mJ
E _{AR}	Repetitive Avalanche Energy	(Note 2)	13	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	5.8	V/ns
В	Total Power Dissipation(@Tc=25℃)		130	W
P_D	Derating Factor above 25℃		1.3	W/℃
T _J , T _{stg}	Junction and Storage Temperature		-55~150	°C
TL	Channel Temperature (for 10 seconds)		300	$^{\circ}$

Thermal Characteristics

Symbol	Doromotor		Units		
Symbol	Parameter	Min	Тур	Max	Ullits
R _{QJC}	Thermal Resistance, Junction-to-Case	-	-	0.96	°C/W
R _{Qcs}	Case-to-Sink, Flat, Greased Surface		0.5		°C/W
R _{QJA}	Thermal Resistance, Junction-to-Ambient	- 1	-	62.5	°C/W

Electrical Characteristics (Tc = 25°C)

Charact	eristics	Symbol	Test Condition	Min	Туре	Max	Unit
Gate leakage curre	ent	I _{GSS}	V _{GS} = ±20 V, V _{DS} = 0 V	-	-	±100	nA
Gate-source break	kdown voltage	V _{(BR)GSS}	I _G = ±10 μA, V _{DS} = 0 V	±20	-	-	V
Drain cut-off current		a cut off current		-	-	1	μA
		I _{DSS}	V _{DS} = 60 V, Tc = 125°C	-	-	250	μA
Drain-source breat	kdown voltage	V _{(BR)DSS}	I _D = 250 μA, V _{GS} = 0 V	60	-	-	V
Gate threshold volt	age	V _{GS(th)}	V _{DS} = 10 V, I _D =250 μA	2	-	4	V
Drain-source ON r	esistance	R _{DS(ON)}	V _{GS} = 10 V, I _D = 25A	-	20	22	mΩ
Forward Transconductance		g fs	V _{DS} =25V, I _D = 25A	-	22	-	s
Input capacitance		Ciss	V _{DS} = 25 V,	-	1180	1540	
Reverse transfer capacitance		Crss	V _{GS} = 0 V,	-	64	91	pF
Output capacitance	Output capacitance		f = 1 MHz	-	440	580	
	Rise time	tr	V _{DD} =30V	-	15	40	
	Turn-on time	ton	I_D =25A R_G =25 Ω	-	105	220	
Switching time	Fall time	tf	V _{GS} = 10V	-	60	130	ns
	Turn-off time	toff	(Note4,5)	-	65	140	
Total gate charge (gate-source plus gate-drain)		Qg	VDD =48 V,	-	31	41	
Gate-source charge		Qgs	VGS = 10 V, ID =50 A	-	8	-	nC
Gate-drain ("miller") Charge		Qgd	(Note4,5)	-	13	-	

Source-Drain Ratings and Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	Min	Туре	Max	Unit
Continuous drain reverse currer	it I _{DR}	-	-	-	59	Α
Pulse drain reverse current	I _{DRP}	-	-	-	200	Α
Forward voltage (diode)	V_{DSF}	I _{DR} =35A, VGS = 0 V	-	-	1.5	٧
Reverse recovery time	trr	I _{DR} =35A, VGS = 0 V,	-	52	-	ns
Reverse recovery charge	Qrr	dI _{DR} / dt = 100 A / μs	-	75	-	μC

Note 1.Repeativity rating :pulse width limited by junction temperature

- 2.L=0.5mH,I_{AS}=25A,V_DD=25V,V_GS=10V,Starting T_J=25 $^{\circ}\mathrm{C}$
- $3.I_{SD} \le 25A$,di/dt $\le 380A$ /us, $V_{DD} < BV_{DSS}$,STARTING TJ= 25° C
- 4.Pulse Test: Pulse Width≤300us, Duty Cycle≤2%
- 5. Essentially independent of operating temperature.

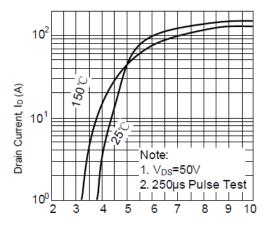


Fig. 1 Transfer Characteristics

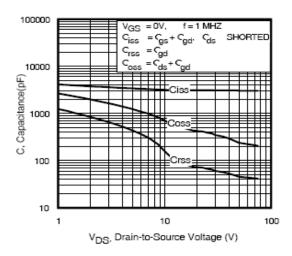


Fig.3 Typical Capacitance vs
Drain Current

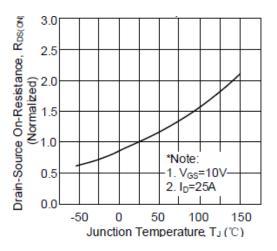


Fig.5 On-Resistance Variation vs Junction Temperature

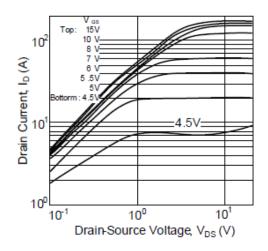


Fig.2 On-Statet Characteristics

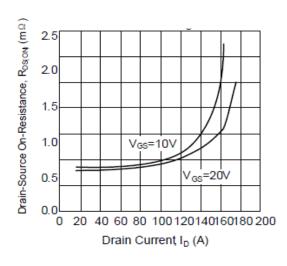


Fig.4 On-Resistance Variation vs Drain Current and Gate Voltage

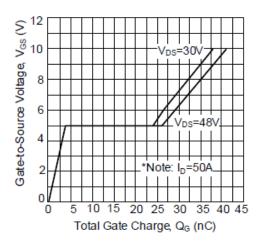


Fig.6 Gate Charge Characteristics

W

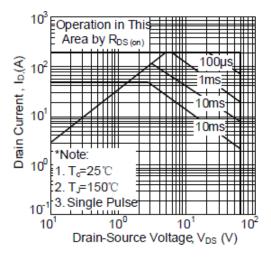


Fig.7 Maximum Safe Operation Area

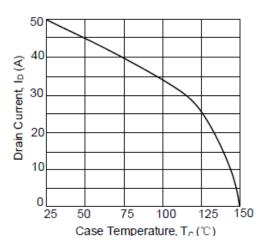


Fig.8 Maximum Drain Current vs Case Temperature

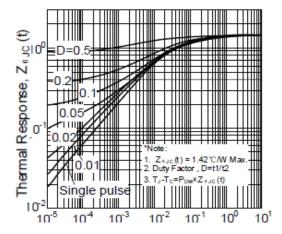


Fig.9 Square Wave Pulse Duration, t₁ (sec) :

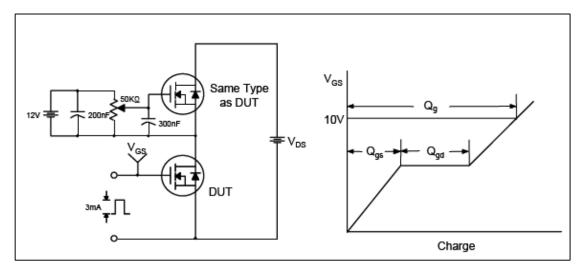


Fig.10 Gate Test Circuit & Waveform

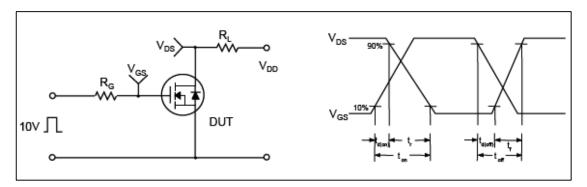


Fig.11 Resistive Switching Test Circuit & Waveform

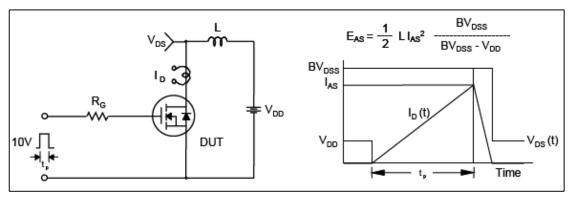


Fig.12 Unclamped Inductive Switching Test Circuit & Waveform

W

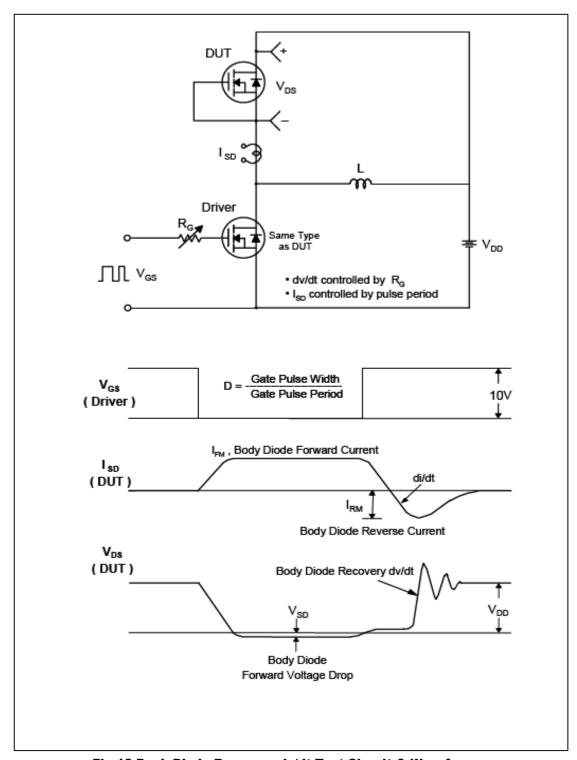
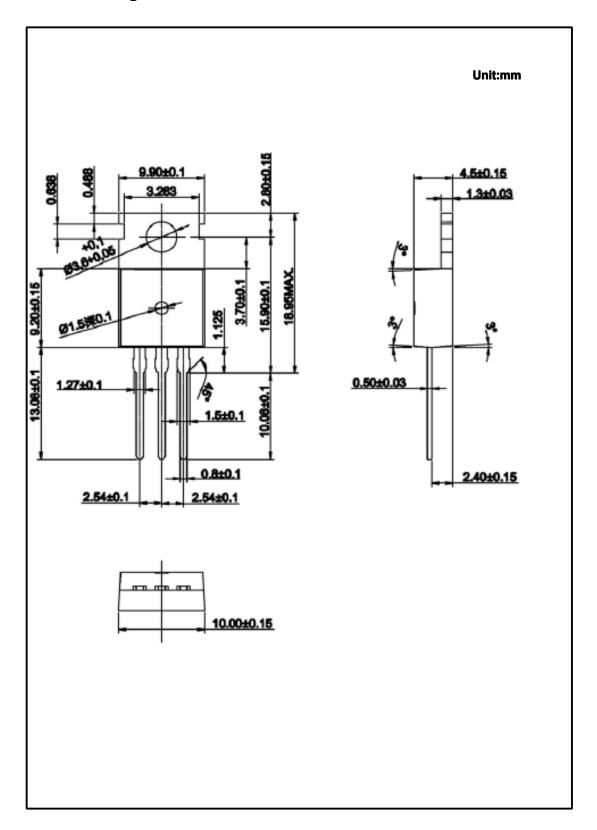



Fig.13 Peak Diode Recovery dv/dt Test Circuit & Waveform

W

TO-220 Package Dimension

